会员
深度学习:从Python到TensorFlow应用实战
计算机网络计算机理论、基础知识4.4万字
更新时间:2020-07-03 12:59:13 最新章节:附录CD
书籍简介
《深度学习:从Python到TensorFlow应用实战》全面介绍深度学习中的卷积神经网络结构、学习原理、代码实现、API调用等基本知识,重点介绍开发深度学习应用所需要的Python技术基础以及TensorFlow深度学习库,并以文本分类和语音识别为例说明TensorFlow的应用场景。《深度学习:从Python到TensorFlow应用实战》可供对TensorFlow比较熟悉并且对机器学习有所了解的开发人员、科技工作者和研究人员参考,也可作为高等院校计算机、软件工程等专业高年级本科生与研究生的教材。
品牌:清华大学
上架时间:2020-04-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
叶虎
同类热门书
最新上架
- 会员本书以简洁的语言介绍了使用Word和InDesign编辑与排版文档所需掌握的主要功能、操作方法和实用技巧。本书提供了动手实践案例实战疑难解答几个栏目,以便增强学习效果,使读者可以更好地将理论知识与实践相结合。本书共9章,内容分为Word和InDesign两部分:Word部分中的内容主要包括文档基本操作和页面设置、文本编辑和格式设置、创建和设置表格、插入和设置图片、图文表混排、创建和使用样式与模板、计算机9.9万字
- 会员本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字
- 会员《重构知识:在线知识传播的疆域、结构与机制》旨在探究社会化媒体知识分享平台的知识分享行为规律、知识疆域结构特征、知识构建的动力机制以及知识普惠的技术实现。依托于当前人文社会科学新文科建设总体要求,本书基于传播学理论视野,利用信息科学计算技术,结合复杂网络分析框架,致力于解决当前传播学现实问题。具体而言,本研究旨在探究基于互联网技术的知识传播,提高知识传播效率,推进知识普惠,探究信息技术能够惠及广泛计算机11.1万字
- 会员《剪映短视频剪辑与运营标准教程(全彩微课版)》围绕剪映短视频的创作展开,由浅入深、全面系统地对短视频的拍摄、剪辑、发布、运营等环节进行介绍,不仅能让新手制作出精彩的短视频,还可以让有一定后期剪辑基础的读者掌握更多创意效果的制作方法。《剪映短视频剪辑与运营标准教程(全彩微课版)》共9章,内容包括短视频剪辑基础知识、素材拍摄技法、短视频剪辑工具—剪映的基本功能、短视频字幕处理、音效的添加、视频转场特效计算机6.3万字
- 会员本书系统的介绍了Vue框架基础、框架应用、生态组成、项目实战、框架演进、Vue原理剖析及Vue框架的原理实现。全书共分为8章:第1章为行业发展介绍,第2章为Vue2.x的开发基础,第3章为Vue2.x的组件开发,第4章为VueCLI开发完全指南,第5章为VueCLI项目实战,第6章为Vite+Vue3完全开发指南,第7章为Vue3.x项目实战,第8章为实现原理介绍。书中主要内容包括:W计算机13.9万字
- 会员本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字
- 会员《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练计算机6万字
- 会员本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字