会员
深度学习与神经网络
更新时间:2023-02-28 19:09:41 最新章节:参考文献
书籍简介
神经网络与深度学习是人工智能研究的重要领域,是机器学习的重要组成部分。人工智能是研究理解和模拟人类智能、智能行为及其规律的科学。本书紧紧围绕神经网络和深度学习的基础知识体系进行系统的梳理,力求从基础理论、经典模型和前沿应用展开论述,便于读者能够较为全面地掌握深度学习的相关知识。全书共16章。第1章是绪论,简要介绍人工智能、机器学习、神经网络与深度学习的基本概念及相互关系,并对神经网络的发展历程和产生机理进行阐述;第2章介绍神经网络的基本神经元模型、网络结构、学习方法、学习规则、正则化方法、模型评估方法等基础知识;第3~8章介绍多层感知器神经网络、自组织竞争神经网络、径向基函数神经网络、卷积神经网络、循环神经网络、注意力机制与反馈网络;第9章介绍深度学习网络优化的相关内容;第10~13章介绍受限玻尔兹曼机和深度置信网络、栈式自编码器、生成对抗网络和图神经网络;第14章介绍深度强化学习;第15章介绍深度学习的可解释性;第16章介绍多模态预训练模型。深度学习是源于对含有多个隐藏层的神经网络结构进行的研究,以便建立和模拟人脑的学习过程。本书整理了人工神经网络从简单到复杂的模型,归纳和总结了神经网络的理论、方法和应用实践。本书可以作为高等院校人工智能及相关专业或非计算机专业的参考用书,也可以作为人工智能领域的科技工作者或科研机构工作人员的参考用书。
上架时间:2022-11-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
赵眸光编著
同类热门书
最新上架
- 会员ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。计算机13.2万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字
- 会员这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字
- 会员本书参照产业界自动驾驶技术研发的基本流程,充分借鉴了产业界在自动驾驶技术领域中的实际研发经验,以高性能的智能小车和高度仿真的车道沙盘为实验教具和运行环境,深入浅出地讲解自动驾驶技术的原理与实际应用,为初学者打开一扇通往人工智能世界的大门。本书以帮助初学者如何从无到有地打造出具备自动驾驶功能的智能小车为主线,内容分为看车(了解自动驾驶)、造车(设计智能小车)、开车(收集训练数据)、写车(编写自动驾驶计算机14.9万字
- 会员这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字
- 会员人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字
- 会员本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字