- 高通量测序技术在肺癌领域的应用
- 罗洁
- 987字
- 2021-03-23 19:49:54
参考文献
[1]Berg P.Fred Sanger:a memorial tribute[J].Proc Natl Acad Sci U S A,2014,111:883-884.
[2]Mardis E R.Next-generation sequencing platforms[J].Annu Rev Anal Chem(Palo Alto Calif),2013,6:287-303.
[3]Kircher M, Kelso J.High-throughput DNA sequencing—concepts and limitations[J].Bioessays,2010,32:524-536.
[4]樊绮诗,吴蓓颖.第二代测序技术在肿瘤诊疗中的应用及其价值与风险[J].检验医学, 2017,32:245-249.
[5]Liu L, Li Y, Li S, et al.Comparison of next-generation sequencing systems[J].J Biomed Biotechnol,2012:251364.
[6]Stankiewicz P, Lupski J R.Structural variation in the human genome and its role in disease[J].Annu Rev Med,2010,61:437-455.
[7]McCarroll S A, Altshuler D M.Copy-number variation and association studies of human disease[J].Nat Genet,2007,39:S37-42.
[8]Mirkin S M.Expandable DNA repeats and human disease[J].Nature,2007,447:932-940.
[9]Chaisson M J, Wilson R K, Eichler E E.Genetic variation and the de novo assembly of human genomes[J].Nat Rev Genet,2015,16:627-640.
[10]Lam E T, Hastie A, Lin C, et al.Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly[J].Nat Biotechnol,2012,30:771-776.
[11]Eichler E E, Clark R A, She X.An assessment of the sequence gaps:unfinished business in a finished human genome[J].Nat Rev Genet,2004,5:345-354.
[12]Chaisson M J, Huddleston J, Dennis M Y, et al.Resolving the complexity of the human genome using single-molecule sequencing[J].Nature,2015,517:608-611.
[13]Snyder M W, Adey A, Kitzman J O, et al.Haplotype-resolved genome sequencing:experimental methods and applications[J].Nat Rev Genet,2015,16:344-358.
[14]Ritz A, Bashir A, Sindi S, et al.Characterization of structural variants with single molecule and hybrid sequencing approaches [J].Bioinformatics, 2014, 30:3458-3466.
[15]KuleshovV, Xie D, Chen R, et al.Whole-genome haplotyping using long reads and statistical methods[J].Nat Biotechnol,2014,32:261-266.
[16]Eid J, Fehr A, Gray J, et al.Real-time DNA sequencing from single polymerase molecules[J].Science,2009,323:133-138.
[17]Levene M J, Korlach J, Turner S W, et al.Zero-mode waveguides for single-molecule analysis at high concentrations[J].Science,2003,299:682-686.
[18]English A C, Salerno W J, Hampton O A, et al.Assessing structural variation in a personal genome-towards a human reference diploid genome[J].BMC Genomics, 2015,16:286.
[19]Schatz M C, Delcher A L, Salzberg S L.Assembly of large genomes using second-generation sequencing[J].Genome Res,2010,20:1165-1173.
[20]Carneiro M O, Russ C, Ross M G, et al.Pacific biosciences sequencing technology for genotyping and variation discovery in human data [J].BMC Genomics,2012,13:375.
[21]Quail M A, Smith M, Coupland P, et al.A tale of three next generation sequencing platforms:comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[J].BMC Genomics,2012,13:341.
[22]Koren S, Schatz M C, Walenz B P, et al.Hybrid error correction and de novo assembly of single-molecule sequencing reads [J].Nat Biotechnol, 2012, 30:693-700.
[23]Larsen P A, Heilman A M, Yoder A D.The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms[J].BMC Genomics,2014,15:720.
[24]Goodwin S, Gurtowski J, Ethe-Sayers S, et al.Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome[J].Genome Res, 2015,25:1750-1756.
[25]Jain M, Fiddes I T, Miga K H, et al.Improved data analysis for the MinION nanopore sequencer[J].Nat Methods,2015,12:351-356.
[26]Quick J, Ashton P, Calus S, et al.Rapid draft sequencing and rea-l time nanopore sequencing in a hospital outbreak of Salmonella[J].Genome Biol,2015,16:114.
[27]Quick J, Loman N J, Duraffour S, et al.Real-time, portable genome sequencing for Ebola surveillance[J].Nature,2016,530:228-232.
[28]Park P J.ChIP-seq:advantages and challenges of a maturing technology[J].Nat Rev Genet,2009,10:669-680.
[29]Rauch C, Trieb M, Wibowo F R, et al.Towards an understanding of DNA recognition by the methyl-CpG binding domain 1[J].J Biomol Struct Dyn,2005,22:695-706.
[30]Oda M, Glass J L, Thompson R F, et al.High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers[J].Nucleic Acids Res,2009,37:3829-3839.
[31]Irizarry R A, Ladd-Acosta C, Carvalho B, et al.Comprehensive high-throughput arrays for relative methylation(CHARM)[J].Genome Res,2008,18:780-790.
[32]Meissner A, Gnirke A, Bell G W, et al.Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis[J].Nucleic Acids Res, 2005,33:5868-5877.
[33]Flusberg B A, Webster D R, Lee J H, et al.Direct detection of DNA methylation during single-molecule, real-time sequencing[J].Nat Methods,2010,7:461-465.
[34]Wescoe Z L, Schreiber J, Akeson M.Nanopores discriminate among five C5-cytosine variants in DNA[J].J Am Chem Soc,2014,136:16582-16587.
[35]Cirulli E T, Goldstein D B.Uncovering the roles of rare variants in common disease through whole-genome sequencing[J].Nat Rev Genet,2010,11:415-425.
[36]Prat A, Perou C M.Mammary development meets cancer genomics[J].Nat Med,2009,15:842-844.
[37]Abecasis G R, Altshuler D, Auton A, et al.A map of human genome variation from population-scale sequencing[J].Nature,2010,467:1061-1073.
[38]Auton A, Brooks L D, Durbin R M, et al.A global reference for human genetic variation[J].Nature,2015,526:68-74.
[39]Sudmant P H, Rausch T, Gardner E J, et al.An integrated map of structural variation in 2,504 human genomes[J].Nature,2015,526:75-81.
[40]Consortium U K, Walter K, Min J L, et al.The UK10K project identifies rare variants in health and disease[J].Nature,2015,526:82-90.
[41]Gudbjartsson D F, Helgason H, Gudjonsson S A, et al.Large-scale whole-genome sequencing of the Icelandic population[J].Nat Genet,2015,47:435-444.
[42]Sidore C, Busonero F, Maschio A, et al.Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers[J].Nat Genet,2015,47:1272-1281.
[43]Iossifov I, O'Roak B J, Sanders S J, et al.The contribution of de novo coding mutations to autism spectrum disorder[J].Nature,2014,515:216-221.
[44]Treutlein B, Brownfield D G, Wu A R, et al.Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq[J].Nature,2014,509:371-375.
[45]Li S, Tighe S W, Nicolet C M, et al.Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study[J].Nat Biotechnol,2014,32:915-925.
[46]Sharon D, Tilgner H, Grubert F, et al.A single-molecule long-read survey of the human transcriptome[J].Nat Biotechnol,2013,31:1009-1014.
[47]Schatz M C, Langmead B.The DNA Data Deluge:Fast, efficient genome sequencing machines are spewing out more data than geneticists can analyze[J].IEEE Spectr, 2013,50:26-33.
[48]Pop M, Salzberg S L.Bioinformatics challenges of new sequencing technology[J]. Trends Genet,2008,24:142-149.
[49]Griffith M, Miller C A, Griffith OL, et al.Optimizing cancer genome sequencing and analysis[J].Cell Syst,2015,1:210-223.
[50]Gargis A S, Kalman L, Berry M W, et al.Assuring the quality of next-generation sequencing in clinical laboratory practice[J].Nat Biotechnol,2012,30:1033-1036.
[51]Sunyaev S R.Inferring causality and functional significance of human coding DNA variants[J].Hum Mol Genet,2012,21:R10-17.
[52]Chrystoja C C, Diamandis E P.Whole genome sequencing as a diagnostic test:challenges and opportunities[J].Clin Chem,2014,60:724-733.
[53]McGuire A L, Joffe S, Koenig B A, et al.Point-counterpoint.Ethics and genomic incidental findings[J].Science,2013,340:1047-1048.