- 机器学习算法评估实战
- 宋亚统
- 384字
- 2021-05-18 16:57:59
评估体系的关键因素
实用性
算法能够上线的最基本条件就是要切合实际业务场景,因此,评估体系首先应该能够解释清楚一个算法是否能够解决实际的业务问题。
容错程度
评估体系应该告诉算法设计者,这个算法在什么情况下是一定适用的、不会出错的;在什么情况下不能保证准确性,需要采取其他“兜底”策略来补充。
性能
如果说实用性是决定算法是否有研发价值的标杆,那么性能评估则是决定算法是否能落地实施的准绳。无论一个算法的业务效果表现多么出色,如果性能不符合实际生产的需要,那么它也只是纸上谈兵。
可解释性
算法设计是一门学科,所有的数据指标都必须具备科学的依据才能成立,得到的评估结论不能轻易被上级领导和客户推翻。
表现形式
表现形式是直接决定你的算法评估结果能否被上级领导写入PPT的关键因素之一。评估结果能用图展示就不要用表,能用表展示就不要用文字,毕竟每个人都不愿意花费过多时间在复杂的文字阅读理解上。