- 曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 985字
- 2020-11-18 22:43:48
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739190906-lCHYapdxD23jfVjuLgJ6fxZWUFSwOPiX-0-a4169ad4ed98caf3a17650658d084ba9)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739190906-Xq8EMZmM0FvOGBGJFfdwJP5b3GLKfudW-0-1fce677a244c2617cc97bbcbb421522d)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739190906-2npceaIzfb9WAB9T1zDgukSQ8fprc7FN-0-423626816cb65857230f03a94d9b1661)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739190906-0LVTWX1YszesS5X2OheeocfN0c1l97YZ-0-89a7bb7e76aff3583d0a89648a632742)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739190906-Zl5InNdqnhXSfSTXLgPjJG9lMiLF3ovh-0-d1e0e01d0fdf0bb964892a196f0807ff)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739190906-vlJxFpxRsVxVUkeoV1bbBOowBmUizRf1-0-8980df30ace48716db43b54a44493c1d)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739190906-zH7d639Lz1Ci4z1IMJFocu0oOo0ZKlay-0-5513b1fc061177e89be420e68c95cc15)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739190906-NRAquqTFqXXaknUWFU44Y2MGfEyk4l2W-0-14dd8358b431f6f65bfff9466a20052a)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739190906-WfcgX5Od5plHB1ajicXATpbmYVloDPEy-0-00b96c7437eb1c48c6a3d6753cd022c5)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739190906-pqA4l0ajLUnbZyMu5DVLTp6rrlz4NGxP-0-712f1d9361fbb96cb2986016cab1c942)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739190906-CN1KqMTQIyPByy8AbjIqJ9YRrByOAebT-0-1f2f854ba9362878e5342703bfb99ad3)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739190906-tbmFRvFHklPLVZfLJvRfPtyCZnTUx9fI-0-670b2a7c0d8a78832338bf4ae9c4b2bd)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739190906-PNmkpiVHycJeQpHNa6JjLvbBfBRCxUPs-0-748f55f2b24cab4278f56ee3e27630a9)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739190906-puDwcJvDn2zIkmxOG26PODBcYUSmRn3e-0-b07c5b29f64fbf1a23cd2d7722637141)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739190906-EfRlBStZQwLnfipAqZLQGJLVnw8lMCkn-0-6c70e3692445f82c68683356e82c50b7)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739190906-v6dJYQGm9PyNKrIQYBrN3MGUfyVVLfUE-0-055a00de71e820415bd7c381a476aa78)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739190906-GBQGv3PjSX8yVDzY85nB0Pl29Kjk1J3p-0-c13628f916d365a14b30f7d56920d172)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739190906-6kk1QuMfY7thXqUzdMSwCX4tk6VEAkaX-0-59120fa3ed7da196b0e9266526668011)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739190906-yrNqmweKIfCKQtHd50EXXcRqjlrhqgRQ-0-4cafe40402c69f887f433dcdf5483508)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739190906-WUkmtjV3Gy2Xpo1rHDZcN5YSEy2707TJ-0-6394c28a22c7b917b3b0f7356de855b2)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739190906-LqlUUo8Ku3vRRxU8pMhC7718ckpjyjd3-0-779ef5a30cd3755432de0fe89ea33203)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739190906-SGhAYT1zbZG4hyw4JrXDHuH4WHAbjxXt-0-438b71ab075df802ddff2e2bc9aaf8bd)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739190906-SyrTlVeBnOBe5fmEJ71oQG9qDr9PCN49-0-ce84412109f3648c22c5642d7e21bf71)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739190906-7PkLojFD9YpuGIdkOkvmyIqfuJMv6Blk-0-a44bd551d6c06654de683c1b3a34b752)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739190906-9F88TLsrSlnlTV4jP1Hs9l6NqAkutb87-0-a8295875154b2979f0030b8f9e036bfb)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739190906-waF4uhRqJu4Vqya6k3yfKSoNdrw6rU2J-0-298e3d9404fa47c487ebdf81e1d7f795)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739190906-aDUY4BEGaHRxC09J1a04QUSpjwXOeE9P-0-ea70848578c6e6eaddd92b2fea2c4072)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739190906-jLdvbYodBVV3CEvdZbYUe0QYqyiAoh3W-0-daeab0087de321c2890cc57593900954)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739190906-1Pp7TLOOfiJnLF6cv9S3Uxj0GZC3fr16-0-5e30167754d2c44bf798e85387ac2aa3)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739190906-atd7IYqIrx6p4JHBp4H1PAKyIUNIwnLp-0-fe215ddcac0b66cad86f3bb0ba5598d0)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739190906-eNvO7UH3iBQzsr36BRx766MsCMVovEgc-0-f4c132dc013ae8334f53436b427b3e59)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739190906-pkUHr6ZqJILqCgfoWImo3K9prQSaVhc7-0-351792160bf6db40f7044ad1cd439ed2)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739190906-D7nuGCm7QZwgoe3B9nHoyOR3RuYOBuWk-0-5775ba7b1f9d96e496ecafd99afa2b3c)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739190906-jEax4o1NylgxweXl9L4st3qm4OaG4YEs-0-915853361fbcc83998e190bbc6e4735e)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739190906-itwyLouGVF0Qxhb1PLpqDjfJqMw7jspe-0-0e1999339a7dcf9b0528981443bdde46)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739190906-wmw2bxUkPTX75IErG4vsoQUX5aaU2IhD-0-0318b9eb06027a1e54820b0dc9579167)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739190906-dkNPniwEM0naSVSTcYFvXpRS3BEaER3n-0-58057222f8338249fcc08f3f36578ffe)